Profinite completions and isomorphic finite quotients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profinite groups, profinite completions and a conjecture of Moore

Let R be any ring (with 1), Γ a group and RΓ the corresponding group ring. Let H be a subgroup of Γ of finite index. Let M be an RΓ−module, whose restriction to RH is projective. Moore’s conjecture [5]: Assume for every nontrivial element x in Γ, at least one of the following two conditions holds: M1) 〈x〉 ∩ H 6= {e} (in particular this holds if Γ is torsion free) M2) ord(x) is finite and invert...

متن کامل

Cartesian products as profinite completions

We prove that if a Cartesian product of alternating groups is topologically finitely generated, then it is the profinite completion of a finitely generated residually finite group. The same holds for Cartesian producs of other simple groups under some natural restrictions.

متن کامل

Profinite Heyting Algebras and Profinite Completions of Heyting Algebras

This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...

متن کامل

The Schur Multiplier, Profinite Completions and Decidability

We fix a finitely presented group Q and consider short exact sequences 1 → N → Γ → Q → 1 with Γ finitely generated. The inclusion N ↪→ Γ induces a morphism of profinite completions N̂ → Γ̂. We prove that this is an isomorphism for all N and Γ if and only if Q is super-perfect and has no proper subgroups of finite index. We prove that there is no algorithm that, given a finitely presented, residua...

متن کامل

Decision Problems and Profinite Completions of Groups

We consider pairs of finitely presented, residually finite groups P ↪→ Γ for which the induced map of profinite completions P̂ → Γ̂ is an isomorphism. We prove that there is no algorithm that, given an arbitrary such pair, can determine whether or not P is isomorphic to Γ. We construct pairs for which the conjugacy problem in Γ can be solved in quadratic time but the conjugacy problem in P is uns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1982

ISSN: 0022-4049

DOI: 10.1016/0022-4049(82)90098-6